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The paper is a study of experimental data in the light of new theories of turbulence 
recently developed by the first author for a number of problems including flow in a 
pipe, boundary layer a t  zero incidence, atmospheric boundary layer, turbulent con- 
vection and distribution of energy in wavenumber space in decaying, isotropic tur- 
bulence. In  each of these, a basic element is a ‘mesolayer’ or ‘mesoregion’ in physical 
space or wavenumber space which is absent in earlier theories and which intrudes 
between the inner and outer regions preventing the overlap assumed in the derivation 
of the classical results, e.g. the logarithmic profile in shear flow. The new and old 
theories differ both in principle and in the final results: the new ideas replace rather 
than modify or extend the older ones. 

The main purpose of this paper is to bring together accumulated evidence con- 
cerning the mesolayer theories. We believe that this evidence provides overwhelming 
support for the existence of the mesolayer and for its pervasive importance in problems 
of turbu1ence.f 

1. Introduction 
One of us (R.R. L.) has recently developed new concepts in the theory of turbulent 

motion for individual problems, namely turbulent flow in a pipe, turbulent flow in a 
boundary layer a t  zero incidence, the turbulent atmospheric boundary layer, turbulent 
convection and the energy spectrum a t  large wavenumbers in isotropic, decaying 
turbulence. 

The basic ingredient in these theories is a new boundary layer, which we call the 
mesolayer (and a new region in wavenumber space called the mesoregion). These 
regions have escaped notice, in general, although they resemble the laminar boundary 
layer on a flat plate (Batchelor 1967, p. 309) or, in turbulence, the viscous layer in the 
so-called shear-free turbulence of Uzkan & Reynolds (1967), Thomas & Hancock 
(1977) and Hunt & Graham (1978). The mesolayer makes a fundamental change in 
the existing theories of turbulence. The purpose of this paper is to present all data we 

t Editorial footnote. Although the referees were not persuaded that the claims for the ‘new 
theories of turbulence’, made by the authors in the abstract and elsewhere in this paper, are 
justified, we think that publication in the Journal may serve a useful purpose. The authors 
have assembled a large body of data for various turbulent flow systems. These data should 
enable readers to test different aspects of the ‘classical’ and ‘new’ theories for themselves and 
should stimulate thought about the foundations of the classical ideas and about extensions of 
these ideas, as well as about the validity of the new theories. 
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have so far found relevant to the existence of the mesolayer. The title suggests that  
this evidence supports the theory. It does, but we do not suppress contrary evidence. 
In  fact, we have found no data which conflict with the predictions of the theory in 
any important way. 

The theories yield behaviours of various mean quantities as functions of space or 
wavenumber, but only upon the assignment of universal constants. Actually, where 
it is possible to  make comparisons, the constants may be chosen to  afford excellent 
agreement with the data. But despite the fact that  such agreement has long been 
accepted as verification of the logarithmic and k-9 profiles, the fashion in recent years 
is to require more than this for publication of new theories (as if in reluctance to  
contemplate the possibility that these mainstays of turbulence wisdom are wrong), 
and so we concentrate here on more severe tests of our predictions. For the most part, 
we look into the theories for measurable, direct manifestations of the existence of the 
mesolayer and verify that the locations of these vary with the predicted location of 
the mesolayer. 

More detailed papers (Long 1980a-d; Chern & Long 1980) on the particular appli- 
cations of mesolayer theory specified in the first paragraph of this section are available, 
and may be obtained direct on request from the authors. 

2. Comments on classical theory 
We begin with some general comments on existing theory (which we call ‘classical’) 

of turbulent shear flow a t  high Reynolds numbers near a wall. The basic ideas were 
developed long ago by von Khrmhn (1930)) Prandtl(i925, 1932)) and are set forth in 
the basic textbooks, for example Monin & Yaglom (1971)) Tennekes & Lumley (1972)) 
and Hinze (1975). The theory contains three basic assumptions. The first, called ‘the 
universal law of the wall’, is that  a region exists near the wall where mean quantities 
are functions only of viscosity v, friction velocity u, and distance from the wall zd, 
where we use the subscript d to indicate dimensional quantities. The law of the wall, 
pertaining to mean velocity, for example, is 

(1) 

where z = u,zd/v and where, throughout the paper, we scale generally on u, and v. 
We need not doubt that  this assumption is correct. I n  the first place it is a very mild 
hypothesis. For example, if one pictures an infinite smooth plate put in motion 
parallel to  itself by the imposition of a stress per unit area p$, the assumption of the 
law of the wall amounts, merely, to  accepting that the mean velocity relative to the 
wall a t  a fixed distance above the plate ultimately becomes steady so that time, 
proportional in this case to the outer length, does not enter the problem in a region 
near the wall. I n  turbulent flow in a pipe the law of the wall assumes merely that the 
mean velocity a t  a fixed value of z becomes independent of the radius of the pipe a 
as a -+ 00, holding the friction velocity fixed. I n  any case, the assumption has been 
verified in all experiments in pipes and boundary layers, e.g. Laufer (1954)) and in 
many other types of flows. Laufer’s data, for example, indicate that all mean curves, 
scaled on u, and v, collapse into a single curve in a region near the wall whatever the 
size of the Reynolds number R, although the collapse occurs in regions of various 
thicknesses depending, somewhat, on the mean quantity being measured. For example, 

- 
u = U+(z) ,  
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the region of the law of the wall for the root-mean-square streamwise velocity in a 
pipe is perhaps one-half the thickness of the same region for the root-mean-square 
normal velocity (Laufer 1954; Lawn 1971). We will offer an explanation for this later. 

The second assumption of classical theory (von K&rm&n 1930; Townsend 1976, p. 
133) is ‘Reynolds number similarity ’, which assumes that a region exists far from the 
wall where, to first approxima.tion, dimensional forms of mean quantities are inde- 
pendent of v and so depend only on u,, H and x,, where H is the outer length, e.g. the 
thickness of the boundary layer or the radius of the pipe. Care is required here because 
experiment indicates that mean quantities having an intimate connection with the 
small scales of the turbulent motion (fine structure) in fact vary with the viscosity 
in the outer region. We illustrate by considering the energy equation in shear flow. 
One term is a generation term T Z 2 ,  where T is the Reynolds stress, T = -uv, and 
another is the dissipation 6. The dimensional forms of Reynolds stress and mean velo- 
city gradient conform to Reynolds numbers similarity as shown in countless experi- 
ments, for example Fritsch (1928), Laufer (1954) and Perry & Abell (1975). Not 
surprisingly then, the dimensional dissipation function Ed also obeys Reynolds number 
similarity because the generation and the dissipation terms balance closely in the 
outer region. But notice that 

N v(v,u;)2 (2) 

and therefore that (V,U;)~, though also a mean quantity, is inversely proportional to 
the viscosity in the outer region and does not obey Reynolds number similarity. Of course, 
derivatives in turbulent flows, and the mean velocity itself are influenced by viscosity, 
and we must be careful not to require that they conform to Reynolds number simi- 
larity. If we keep this in mind, however, independence of v is not only an excellent 
assumption as a practical matter but probably is also asymptotically correct as vis- 
cosity tends to zero and we so assume. 

The third assumption of classical theory is an overlap of the inner and outer regions 
a t  large R implying that mean quantities are independent of both v and H in the over- 
lap region. To many, the assumption of the existence of an overlap region seems so 
obvious that little or no discussion is given of it and we have only discovered one 
author who seriously challenges it (Malkus 1979). Tennekes & Lumley (1972, p. 147) 
accept its existence but consider that the problem deserves detailed discussion. They 
argue (figure 1) that, although v is important near the wall, as we move outward it 
should become unimportant beyond some value of z of order 1, say a t  z = ai, where 
ai is some number, perhaps ai = 100. On the other hand, as we move inward from the 
outer region, H should become unimportant a t  some fixed value of z,/H, i.e. at some 
x of order R. Figure 1 then shows that an overlap, indicated by the double-hatched 
region, will exist a t  high enough R. The argument is obviously correct if one accepts 
the limits of the inner and outer regions adopted by Tennekes & Lumley, but, seem- 
ingly, the choice of these two limits is only ‘obvious’ if one has faith that the over- 
lap in fact exists ! 
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FIGURE 1 .  Classical concept of inner and outer regions in shear flow and the overlap region 
where H and v are both unimportant. We denote the outer length by H and the Reynolds 
number by R .  We write 5 for the ratio of distance from wall to  outer length. 

3. A new look at the transition region 
In  our initial investigations, it  was observed that in the two experiments of Laufer 

(1954) the Reynolds stress, T = - u'w', appears to have its maximum at distances 
from the wall proportional to Rt. More recently, we have found nine additional points 
for pipe flow from Nikuradse (1932), Ueda & Mizushina (1977) and Schildknecht, 
Miller & Meir (1979) and two other points from experiments with a boundary layer 
a t  zero incidence (Klebanoff 1954, Gupta & Kaplan 1972). We have put them all 
together in figure 2 and they seem indeed to lie on a single line with a &slope. Of 
course, more data are needed but this may be accepted as good indication of such 
behaviour. 

There have been a number of efforts in recent years to carry the classical theory, 
which assumes an overlap, to higher approximations (Tennekes 1968, Yajnik 1970, 
Bush & Fendell 1972, 1973, 1974, Fendell 1972, Afzal & Yajnik 1973, Afzal 1976, 
Lund & Bush 1980). If one accepts the classical theory, it is not hard to accept also 
a form of the higher approximationst in which the errors in both the law of the wall 
and in Reynolds number similarity are of order R-l. Then, by a trivial extension of 
the arguments of Afzal(1976), one obtains 

- 

S = S,$,+S,~,Z-~+S&Z-~+ ... +R-'(S&,Z+S,~,+S&Z-~+...) 
+ R-2(S&z2 + S&z + S& + . . .) + . . . , (3) 

-R-2(X&~+S,+,+ ...)- R - 3 ( S & ~ 2 + S 3 + 1 ~ + . . . ) + . . . ,  (4) 

T = 1 -S&Z-'-S&Z-~- ... -R-l(z+S,+,+S,+,z-l+ ...) 

t Tennekes & Lumley (1972, p. 174) present a theory in which the second approximation t o  
classical theory is proportional to R-4. We have been unsuccessful in attempts to relate their 
work and the earlier work of Tennekes (1968) to our present efforts. 
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FIGURE 2. Distance z,,, of maximum of Reynolds stress from wall for pipes and boundary layers. 
The line is z, = 1.89R*, where R = u,a/v for a pipe and u7Sd/v for a boundary layer where 6, 
is boundary-layer thickness. x , Nikuradse, pipe; 0 ,  Laufer, pipe; 0, Ueda & Mizushina, pipe; 
A, Gupta &, Kaplan, boundary layer; V, Klebanoff, boundary layer; 0, Schildknecht et al., 
boundary layer. 

where S = zU, and we use the exact equation (Monin & Yaglom 1971, p. 269) 

T = 1-zR-l-ZZ. (5) 
Let us now consider the essential nature of the classical assumptions. One assumes 

that there is a region M, far above the sublayer but far also from the centre of the 
pipe in which for large R mean quantities such as Td are independent of v and H as 
v -f 0 and H + a. As we move in M, toward larger and larger zd, we experience ulti- 
mately a small but sensible and growing importance of H .  This  should be felt first at 
some zd of order H or z - R, because v is unimportant in the region M, and further out. 
We see from (4), however, that the first effects of H (or R) are felt when the zR-l term 
begins to compete with the z-l term and that this occurs a t  z - Ra (which is also the 
observed location of the maximum of Td or T )  and we find a basic contradiction in the 
classical arguments. -f Evidently, the effects of viscosity are non-negligible in the 
transition region as our present theory reveals. Furthermore, (4) shows that the first 
effects of Hor R for the curvature, T,, are felt in a different region, z N R, and that the 
order of T,, is R-3 in the transition region for T, z - R). I n  dimensional terms this 
means that the curvature of the Reynolds stress profile is proportional to v-4 in a 
region (just before the transition of T to  outer behaviour) in which v is supposed to 
be negligible ! 

If we associate the maximum of the Reynolds stress with the transition region 
from inner to outer behaviour (and this seems to be a quite reasonable association), 
the true picture appears to be that of figure 3. Here the region of overlap is replaced 
by a transition region in the vicinity of z N R4. I n  the new transition region both H 

t In thia connection, we the final paragraph of $ 5 .  
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FIGURE 3. Inner, outer and transition regions in shear flow according to  mesolayer theory. 
Symbols are explained in figure 1. 

and v are important although v increases in importance as z decreases and H increases 
in importance as z increases, Because 1 < R* < R, the transition region, which we call 
the mesolayer, intrudes between the inner and outer regions no matter how large the Reynolds 
number and prevents the overlap of classical theory. 

Physical insight into the nature of the mesolayer may be gained from recent theo- 
retical and experimental studies of the distortion of turbulence in a wind tunnel by a 
surface parallel t o  the flow and adjusted to  move at the speed of the free stream 
(Uzkan & Reynolds 1967; Thomas & Hancock 1977) .  The large eddies of length 1 are 
unaffected by the surface at distances zd > 1 but nearer to the surface they are dis- 
torted and the streamwise r.m.s. velocity increases at the expense of the normal r.m.s. 
velocity, reaching a maximum a t  a level z ,  N Sam and then decreasing a t  distances 
z,  c S,, obviously because of friction. The thickness of this viscous boundary layer 
was measured to be S,,, g l.S(vx,/U,)*, where x, is the distance from the leading edge 
and U, is the free-stream velocity. This relationship is derived by Hunt & Graham 
(1978) from the form assumed by the equations under the requirement that the vor- 
ticity of the free stream remains unchanged as the fluid moves over the region of the 
plate. Their theoretical constant of proportionality for the viscous layer thickness is 
quite different, however, from that of Uzkan & Reynolds and, moreover, their other 
theoretical results have only a fair agreement with observations. We therefore offer 
an alternative explanation for the thickness of the boundary layer which is also more 
relevant to our present purposes. To do this we first refer to a derivation by the first 
author (Long 1978a, b)  of an energy source on an infinite plane, say a t  xd = 0. The 
motivation for this was the construction of a theoretical model of turbulence in the 
vicinity of an oscillating grid (Thompson & Turner 1975; Hopfinger & Toly 1976). 
The energy source is characterized by a single constant K with the dimensions of 
viscosity. Dimensional analysis then gives the behaviour 

g d  Klx,, 1 Xd, (6) 
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where a, is an r.m.s. velocity and 1 is the integral length scale. A model of turbulence 
in a wind tunnel may be constructed by passing a current of speed U, along the xd 
direction through the plane energy source. The energy equation for high Reynolds 
numbers is then 

where A, is a universal constant and EFD is the energy-flux divergence. I n  the 
stationary case, cr,l is invariant along x, and, since the current simply carries the 
turbulence along with it, this relationship should continue t o  hold. If we now make 
the assumption that the speed of the current U, $ cr,, as in Hunt & Graham (1978), 
we may neglect the middle term in (7) and then, using gal N K ,  obtain 

The empirical formula for the boundary-layer thickness then becomes 

S,, N ( V l / U , ) k  (10) 

Notice that this result may be obtained theoretically by assuming a balance of viscous 
forces of order vcr,/S~, and inertial forces of order u;/l acting on the eddies as they 
‘slosh’ back and forth over the surface. This layer has a thickness identical to that of 
the proposed mesolayer in shear flow, Sam N (vH/u,)) ,  because the large-eddy dimen- 
sion 1 may be replaced by the outer length and the friction velocity by u,. Thus, one 
interpretation of the mesolayer is that it is the viscous boundary layer over which 
the velocity of the large eddies ‘sloshing’ over the surface tends to  zero. Notice also 
that the mesolayer thickness is proportional to Taylor’s microscale for the outer 
region. 

Another interpretation arises from an investigation of thermal convection over a 
hot surface.t Here the same argument holds and the mesolayer thickness is as in (10). 
Dimensional arguments yield cr, N (pH)*, 1 - H ,  where q is the buoyancy flux and H 
is the depth of the convection layer, so that we may write Sam N v*H*q-b. I n  convec- 
tion, an important phenomenon is the rise of thermals from a hot surface. They move 
slowly vertically but are observed also to be carried rapidly along the horizontal by 
the large eddies of size H filling the bulk of the container. These eddies have a speed 
of order (qH)* and a time scale of order t, N Hfq-* and so, if we assume that the ther- 
mals grow by molecular conduction with coefficient K ,  they obtain a size ( ~ t , ) :  over 
the life of a large eddy after which we can presume that they are carried into the main 
portions of the container and torn apart. This dimension, K*H)q-h, precisely equals 
the mesolayer thickness Sam if we ignore variations in the Prandtl number. The 
thermals transport most of the heat in a region well above the sublayer (in which the 
effects of molecular conduction are assumed by classical arguments to  be confined), 
yet their growth is apparently influenced by molecular conduction and in this way 
molecular processes must have a fundamental effect on the distribution of mean 

t Dr C. S. Chern has collaborated with R. R. L. in this aspect of the work, and in somc of the 
work reported in $4 of tliis paper. 
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FIGURE 4. Streak-spacing according to Gupta, Laufer & Kaplan (1971). These are based on 
maxima and minima of correlations of streamwise velocity for variable spanwise separations. 
The two figures are for distance A, and half-distance +A8 between vortices. A, = 2.5R!i, 
approximately. 

quantities in a region far above the sublayer. In  shear turbulence, observations indi- 
cate the existence of a ‘burst’ phenomenon, analogous, perhaps, to thermals, in which 
volumes of fluid also rise from the region of the sublayer and move upward and along 
the surface (e.g. Kline et al. 1967). If their surroundings are laminar, and this is fre- 
quently suggested by experimenters (e.g. Laufer 1975), they will grow after a time 
of the orderof the outer eddy time H/uT to a size (vH/u,)*, which is again preciselythe 
mesolayer thickness. These bursts are of great importance because they contain a 
considerable amount of the energy and account for much of the Reynolds stress 
(Nychas et al. 1973). Therefore, if we accept this physical picture it is not difficult to 
accept a certain role of molecular viscosity in a region well above the sublayer in 
conflict with the concepts of classical theory. Conversely, we may accept a role of the 
outer layer for conditions near the wall on the basis of observations that bursts 
originating near the wall have a statistically definable period that varies with the free- 
stream velocity and the outer layer thickness (Rao et al. 1971). The role of the outer 
layer near the wall has also been demonstrated by measurements (Tritton 1967; 
Mitchell & Hanratty 1966) that the integral length scale is very large, probably of the 
order of the outer length, as close to the wall as can be measured. 

Thermals have been observed many times near a hot surface and appear simply as 
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blobs of hot fluid moving away from the wall. In the case of shear, however, the 
situation seems to be considerably different in that eddies with vorticity along t,he 
stream appear to occur in oppositely rotating pairs (Hinze 1975). They are revealed 
by the streaks of hydrogen bubbles which appear a t  the underlying surface and 
identify the line toward which the motions near the surface in the two vortices are 
directed. If these vortices, which appear to be the two legs of horseshoe or U-shaped 
vortices (Theodorsen 1955, 1962; Hinze 1975, p. 683) begin with very small radii they 
will grow by molecular diffusion of vorticity precisely to the mesolayer thickness in a 
time period of the order of that of the outer eddies. At the same time the interaction 
with the wall will produce a motion of the two vortices toward each other and, there- 
fore, we expect them to be a t  a distance apart of the order of the mesolayer thickness 
too. If they are densely packed in the mesolayer, we also predict that the distance 
apart of the streaks observed a t  the wall should be proportional to the mesolayer 
thickness. This is contrary to the belief of experimentalists that the streaks are a 
distance apart of order 1OOv/u, and therefore independent of the outer length. How- 
ever, the available data (Gupta, Laufer & Kaplan 1971), althoughscantyand scattered, 
may, in fact, favour proportionality to the mesolayer thickness as we see in figure 4. 
Our present conjecture is that the flow, passing over the surface, generates an entire 
mesolayer packed with streamwise vortices and then an eddy comes along and sweeps 
this up into the fluid forming the ‘backs ’ of the turbulent bulges in typical boundary- 
layer turbulence as revealed by the regions of warm fluid found there by Chen & 
Blackwelder (1978) in experiments with a passively heated plate. This region was 
found to be an internal shear layer containing fluid of low streamwise momentum, 
also suggesting an origin near the plate. One observer (Falco 1974, 1977, 1978), in 
fact, observed eddies in the turbulent boundary layer of dimensions of the order of 
Taylor’s microscale for the outer flow which, we have noted, is also the mesolayer 
thickness. 

4. The two components of motion in shear flow 
According to our discussion and to the data, the presence of a mesolayer in the shear- 

free turbulence of Uzkan & Reynolds can scarcely be doubted. Because shear is also 
absent, we should strongly suspect the existence of the mesolayer in turbulent con- 
vection beneath the large eddies sloshing back and forth over the surface. We should 
expect, for example, that the r.m.s. tangential velocity profile would have a peak near 
the wall in the mesolayer. Such maxima in fact occur in experiments by Deardorff 
& Willis (1967) and more recently in experiments by Ferreira (1978) and Adrian & 
Ferreira (1979) as we see in figure 5 .  In  Adrian & Ferreira we could compute the 
Reynolds number from the information in their paper. I n  Deardorff & Willis the 
measurements were made a t  three different Rayleigh numbers, 6.3 x lo5, 2.5 x lo6 
and 10 x 106. We may estimate the corresponding values of the Reynolds number R 
by the following procedure: Using the empirical formula of Globe & Dropkin (1959), 
we obtain a Nusselt-number relation 

N u  = 0.069Rai PrO’374, 

R = (gH)d H/v ,  N ~ L  = qH/tcAb, Ra = AbH3/vtC, Pr = L ~ / K ,  

where 

2 FI. M 105 
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FIGURE 6. Location cm of maximum of the tangential r.m.8. velocity profiles of figure 5. 
x , Ferreira; 0 ,  Deardorff & Willis. 
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FIGURE 7.  ‘Levelling-off’ point gz of mean temperature profile in thermal convection in a plot 
appropriate for low Prandtl numbers. 0, Somerscales & Gazda (1969) ; A, Deardorff & Willis 
(1967); 0, Thomas & Townsend (1957). Open symbole, hot plate; solid symbols, cold plate. 

and Ab is the difference in buoyancy between the plates. Choosing Pr = 0.72 for air, 
we estimate R to  be 191, 353, 654, respectively, for the three Rayleigh numbers. If 
we use 5 as the distance from the wall scaled on the distance between the plates H ,  
the locations of the maxima grn in the two experiments are shown in figure 6 plotted 
against R. The agreement with the curve crn = 1.47R-* is good and supports our 
theoretical determination of the mesolayer thickness in thermal convection. Another 
feature of turbulent convection between a lower hot,surface and an upper cold surface 
which apparently brings out the role of the mesolayer is the behaviour of the mean 

2 - 2  
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FIGURE 8 .  ‘Levelling-off’ point Ct of mean temperature profile in thermal convection in a plot 

appropriate for high Prandtl numbers. Key to data same as in figure 7.  

temperature profile. In  general the temperature decreases rapidly just above the hot 
surface and becomes isothermal in the interior region, decreasing rapidly again at  the 
upper cold plate. This is modified somewhat a t  lower Rayleigh numbers where the 
interior temperature gradient actually reverses and one finds a level of minimum 
temperature at  a certain height above the hot plate and a level of maximum tem- 
perature just below the cold plate. This gradient reversal is caused, evidently, by the 
large eddies bringing the cold or hot fluid from the upper or lower regions and so we 
would expect these extrema to be located in the mesolayer or, when the extrema are 
too weak to measure, that the levelling-off point, 5 = 6, say, should be located in the 
mesolayer. In figures 7 and 8 we plot all available data on the ‘levelling-off’ point as 
{,Pri% and &Prs vs. the Reynolds number and we see that either choice causes a 
collapse of the data (corresponding to a Prandtl number range from 0.72 to 20) along 
lines of slope of - + indicating that the point is fixed in the mesolayer or c, - R-h. In 
a plot of c, vs. R the collapse along a single line does not occur obviously because of 
the Prandtl number dependence. There are two problems in this regard: The theory 
gives a Nusselt number/Rayleigh number relationship Nu - Ra4 for large Rayleigh 
numbers but the ‘constant’ is an unknown function of Pr. In Long (1976), the Prandtl 
number dependence is derived for high and low Pr but this older theory is based on 
classical matching procedures and must be replaced by the mesolayer approach. We 
have not done this but it appears that the results are the same, namely 

Nu - Ra) Pr3 (low Pr) ,  (11) 

Nu N Raf (high Pr) .  (12) 

The second difficulty is that the theory assumes a fixed Prandtl number and so the 
dependence of the mesolayer thickness on Pr is also unknown. We can overcome one 
of these difficulties by using the finding that there is a collapse of the data for a plot 
of & along a curve Ra-g. With this and the two behaviours in (1 1) and (1 2) we obtain 
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the factors of Cl in figures 7 and 8.  Of course there is very little difference between these 
powers of Pr and we certainly cannot make a choice but the important fact remains 
that the ‘ levelling-off’ point is at  R-* at any given Prandtl number. 

According to classical ideas of shear flow over a surface and also of thermal con- 
vection, the eddies near the surface have velocities of the order of the friction velocity 
u, in shear flow or ( p d ) +  in convection and dimensions 1, of order of the distance from 
the surface. The argument is that as one moves upward the viscous terms, propor- 
tional to l ~ ~ ,  decrease faster than the inertial terms, proportional to 1;l, and viscosity 
becomes negligible above a height of order vlu, in shear flow, say, above z d i  = ai v/u7, 
where ai is a constant. In  the interior viscosity is unimportant and quantities vary with 
u, and the outer length H ;  for example, the typical eddy has a velocity of order u, and 
dimensions of order H .  Moving downward, the eddies diminish in size and eventually 
below the level zdo = aoH all length scales except those of the fine structure become 
controlled by distance from the surface. The two points xdi and xdo become more and 
more separated in physical space as the Reynolds number becomes large and the 
region between these points becomes the classical region of overlap. 

It is reasonably clear how this picture must be changed to accommodate a meso- 
layer. We recognize that the large eddies whose sloshing creates the mesolayer have 
dimensions characteristic of the outer length and that such eddies would be absent 
if the outer length were infinite. This suggests that we should regard the turbulence 
as having two components, as indeed has been suggested by several authors in recent 
years, for example Townsend (1976, p. 161). Townsend calls the large eddies the 
‘inactive’ component of turbulence; the others constitute the ‘wall’ component. The 
large eddies are such an important part of the problem in the theory of the present 
paper that the word ‘inactive’ seems inappropriate and we prefer the description of 
Perry & Abell (1977) who call the two components ‘universal’ and ‘nonuniversal’. 
As suggested by the name, the universal component has linear dimensions which all 
scale on distance from the wall as in the classical picture. The non-universal compo- 
nents reflect the existence of the large outer eddies. The two components of motion 
appear clearly in spectra at high Reynolds numbers (Perry & Abell 1975; Bullock, 
Cooper & Abernathy 1978). 

We obtained the thickness of the viscous layer in shear-free turbulence by equating 
the orders of the viscous and inertial terms. Shear turbulence is more involved because 
there is already one viscous layer (sublayer) a t  the wall in a pipe or boundary layer 
and it is not immediately obvious how to obtain another one from a single set of 
Navier-Stokes equations. We can do it, however, if we break u p  the motion into the 
two components, for example 

u = U + f U * ,  u = u++ii*, (13)’ (14) 

where u is the instantaneous velocity in the turbulent flow. The terms with the plus 
suffix correspond to the universal component and the terms with the star suffix to 
thenon-universal component. Only the first component survives when the outer length 
goes to infinity, and so it satisfies the Navier-Stokes equations by itself for all R. 
We call this set of equations N+. This may then be subtracted from the full set N to 
yield a new set of equations N,, valid at finite R. The N* equations are complicated 
because of the nonlinearity of the inertia terms, but the viscous terms are derivatives 
of the second component only. Tt may he shown that by integrating over a ‘box’ in 
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the mesolayer the small-scale effects in the inertial terms of N* can be eliminated. In  
the case of pipe flow this yields R-I for the order of the inertial terms and dk2 for the 
order of the viscous terms, where 8, is the non-dimensional thickness of the boundary 
layer. Thus 8, - R* and we obtain the second viscous boundary layer (mesolayer) in 
much the same way as in shear-free turbulence. 

The importance of friction on the non-universal component 
We have mentioned that the mesolayer thickness is proportional to Taylor’s micro- 
scale and we find this significant, but the current viewpoint in turbulence appears to 
be that the Taylor microscale has mathematical but not physical significance. We may 
explain the importance of friction at distances so far above the sublayer by referring 
again to (3). This shows that near the wall ( z  << R),  the sum of the viscous and Reynolds 
stresses is nearly constant. Since the viscous term is extremely small except in the 
sublayer, it  decreases rapidly in this layer and above, and T rapidly approaches 1. 
We deduce, first, the classical result that the sublayer is the region z - 1 in which 
Reynolds stresses and viscous stresses are of the same order. Further up in the fluid in 
the region where T is nearly constant, the term z/R in (3) must ultimately begin to 
have importance. If we differentiate (3) we obtain 

and this shows that the force due to the Reynolds stress is small, of order R-I, so that 
viscous forces are not negligible despite their smallness. In  summary, frictional forces 
in the mesolayer are very weak, to be sure, because the thickness of the mesolayer is 
much greater than the sublayer, but the inertial forces obtained by differentiating a 
very nearly constant Reynolds stress are also very small and neither can be neglected. 
The balance of these two small forces, of course, defines the thickness of the mesolayer. 
The viscous forces on the first component of motion are negligible in the mesolayer 
because the inertial forces on this component are large, but the viscous forces acting 
on the second component are not negligible because the enormous horizontal length 
scale of the second component 1 N H means weak inertial forces and therefore com- 
paratively important viscous effects. Figure 9 summarizes the discussion. 

A rather similar situation exists in wavenumber space. Investigation of the spectrum 
arises from the conjecture that the layer in physical space of thickness of order of 
Taylor’s microscale should have a counterpart in wavenumber space corresponding 
to eddies of the size of Taylor’s microscale. We may show most simply that a region of 
this kind exists for a turbulence model of the author (Long 1978a) for the decay of 
homogeneous turbulence following a distribution in space at  t = 0 of singularities 
used to develop the energy source on a plane (Long 1978b). One obtains 

a, N (K/ t )&,  I - (Kt ) i ,  €d - K / P ,  ( 1 6 )  
where the constant K with dimensions L2T-I is again characteristic of the energy 
source at  all points of space at  the initial instant t = 0. This is a special case of self- 
preserving turbulence (Korneyev & Sedov 1976). The Reynolds number is a constant 
R = K / v  and ( 1 6 )  assumes large R. We also need the energy equation (Hinze 1975, 
p. 215) 

m l a t  = F - D ,  (17) 
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FIGURE 9. Various regions in shear flow in a pipe, according to classical theory and present theory. 
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FIGURE 10. Schematic behaviour of terms in the energy equation for the spectrum 
and the momentum equation for turbulence in pipe flow. Refer to (15) and ( 1 7 ) .  

where F = aFr:/ak is the energy transfer from smaller to  larger wavenumbers and 
D = 2vk2E is the viscous dissipation. I n  the inertial range, k - k, - 1-1, we assume 
that E - e$k$ and inviscous range k N k, that E N ~ ~ v - ~ k ; ~ , w h e r e  kdis theinverse 
of the Kolmogorov scale 7. We see then that (aE/at)/D is of order R in the inertial 
range and of order R-3 in the viscous range. The ktuation is port,rnyed schcmnticnlly 
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in figure 10. At smaller wavenumbers, the time-rate-of-change (decrease) of energy 
is close to the nonlinear transfer (loss) of energy and dissipation is small. At larger 
wavenumbers the time-rate-of-change (loss) of energy is small and nonlinear transfer 
(gain) of energy is closely balanced by viscous dissipation. Obviously since F changes 
sign and so is zero a t  an intermediate wavenumber, aE/at and D are of the same 
order in a range of wavenumbers k,  N (vt)-* N h-1 and we find the mesoregion in 
wavenumber space. 

There is a certain analogy between the energy equation in (17) and the momentum 
equation in (15) and we illustrate this in figure 10. The viscous force is directly ana- 
logous to the dissipation term; the Reynolds stress force is analogous to the nonlinear 
transfer F and the term R-l is analogous to aE/at. I n  other problems the term on the 
left-hand side of (15) will be more complicated; for example, it is equal to the im- 
balance of Coriolis force and pressure gradient force in the direction transverse to the 
surface stress in the problem of the neutral Ekman layer (9 7). In  the spectrum, the 
vicinity of Taylor’s microscale in wavenumber space is a region where the dissipation 
D is very small, to be sure, but here the nonlinear transfer of energy from one wave- 
number to another, F,, is a maximum and so its derivative F in (17) is very small too. 
We conclude that we can no more neglect friction for k N h-l than we can neglect the 
inertial effects of the nonlinear transfer term in the region. The significance of the meso- 
region for the spectrum is akin to that in shear flow in that a matching of the inner 
( k  N k d )  and outer ( k  N k,) regions to derive the classical k-8 behaviour for E is not 
possible because of the intruding mesoregion. 

5. Turbulent flow in a pipe 
If we accept the existence of the mesolayer (on the basis of the arguments and 

evidence in this paper), the problem is then to so change the approach of classical 
theory, which leads to the logarithmic boundary layer in shear flow, for example, as 
to include the contribution of the mesolayer. We have done this in the cases men- 
tioned in § 1 .  Putting the mesolayer into a new theory seems a t  first glance to be rather 
simple in that we need only construct a new law of the wall incorporating the meso- 
layer and then match the mean expressions in this larger, inner region with the mean 
expressions in the outer region wherein we impose Reynolds number similarity. A 
different set of problems arises in each application, however, and we cannot give many 
of the details here. But the basic approach may be illustrated quite simply by the 
example of pipe flow. The classical approach assumes first an inner region near the 
wall of the pipe in which the mean velocity may be expressed as in (1) 

u = u+(z), z = ZdU,/V, 

where we scale as usual on the friction velocity a t  the wall u, and viscosity v and where 
zd is distance from the wall. Secondly, the classical theory assumes that the velocity 
defect in the outer region may be expressed as 

U-Ti = uo(6), 6 = z/R, R = u7a/v, (18) 

where U = Ud/u7 (U, is the velocity a t  the centre-line) and R is the Reynolds number 
scaled on the radius of the pipe a. Finally, the assumption of the overlap yields the 
classical logarithmic behaviour of the mean velocity in the overlap region by arguments 
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firstgiven by Izakson (1937)andMillikan (1938). Oneobtainsasabonus thelogarithmic 
drag law (Monin & Yaglom 1971). I n  mesolayer theory a new layer x N R)  intrudes 
between the inner and outer layers and must be taken into account. We do this by 
defining a new similarity variable 2 = z/R* and represent the contribution of the 
mesolayer to first order by adding the product of a function of ’2 and a function of R 
to  the right-hand side of (l) ,  i.e. 

T i  = u+(z) + h(R) u*(’2), (19) 

where h(R) is to be determined. The first term in (19) is now the contribution of the 
universal component of the turbulent motion and therefore does not involve the 
outer length, i.e. the Reynolds number. Physically, it is the mean velocity over an 
infinite flat plate in infinite half-space for the given finite value u, of the friction velocity 
a t  the surface. The function h(R) follows from the mean momentum equation. Thus, 
we expand the Reynolds stress in the same fashion 

and then substitute (19) and (20) into the momentum equation which is the derivative 
of (3). We obtain 

where the first equation follows by letting R --f 03 a t  fixed x .  Equation (21) shows 
clearly that h = 1 and g = R-4. The matching condition becomes 

U: + T; = 0, R-lhu; -t R-igT; = - R-1, (21) 

U - G =  ~ ~ ( 5 )  = U(R)-u+(x)-u,(&). (22) 

We may now proceed mathematicalIy with one additional requirement that  the flow 
in infinite half-space be independent of v a t  large zd. We get 

u+ = S&,lnz+C,+, ( x  $ I ) ,  (23) 

U = ~ o o + ~ , t , + C o o + ( S , + , ~ ~ S ~ o ) l n R  (R B I), (24) 

u* = S$In2+Coo (Rt < z < R), (25) 

U - u  = A,,-(S,+,+S,*,)In~ (R: < x < R),  (26) 

where S&, Cia, Sto, . . . are universal constants. The expressions for the velocity in (23) 
and (26) are similar to those of classical theory but the two regions are different. 
We also obtain the same drag law, to first order, as in classical theory. I n  (23) the 
expression for the inner form of the mean profile will approximate the mean velocity 
in a region 1 < z < R: above the subIayer and below the centre of the mesolayer. 
Additional arguments permit passage to  higher approximations and so to  infinite 
series for the drag law and mean quantities in 1 < z < Ra and R* < z < R. 

Experiments indicate that X&, in (23) is close to  K - ~ ,  where K is von KBrmBn’s con- 
stant, and that s,*, is rather small. This means that the mesolayer does not show up 
strongly with respect to mean velocity; indeed in the beginning of the investigation 
on pipe flow there did not appear to be any obvious way to use the mean velocity 
profile to illustrate the existence and importance of the mesolayer. But we will see 
shortly that closer inspection reveals a systematic departure of the mean velocity 
profile from the single logarithmic curve of classical theory and the mesolayer can be 
jdcntified. 
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FIGURE 12. Mean velocity profile in a pipe (Laufer 1954). R = 1150 (= Z C ~ C C / V ) .  

Additional terms from higher approximations permit a qualitative picture of the 
behaviour of the mean velocity in the vicinity of the mesolayer, as shown in figure 11. 
One’s first reaction to the data on mean velocity in a pipe, for example that by Laufer 
(1954) and Perry & Abell(1975), is that within the accuracy of the measurements the 
trend in a thick layer between z = I and z = R is along a logarithmic curve with a 
slope given by von K&rm&n’s constant. This is a surface impression, however, resulting 
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FIGURE 13. Mean velocity profile in 8 pipe (Laufer 1954). R = 8750. 
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FIGURE 14. Mean velocity profile in a pipe (Hishida & Nagano 1979). R = 905. 

from the practice of plotting measurements of mean velocity for many Reynolds 
numbers on the same figure. The resulting confusion is illustrated in figure 3 of the 
paper by Perry & Abell ( 1  975). Even in the absence of data a t  a particular Reynolds 
number, it is obvious that the weak variation about the straight line of figure 1 1  
will be obscured when experiments over a range of Reynolds numbers are plotted 
together if, as is the case, the location of the transition from one logarithmic behaviour 
to another varies with R. But indiviclnd cases are enlightening. We show examples 
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FIGURE 15. Mean velocity profile in a pipe (Hishida & Nagano 1977). 
R = 905. The pipe walls are slightly heated in this case. 

in figures 12-15 of mean velocity profiles in a pipe for four Reynolds numbers. 
Figure 15 is for the same Reynolds number as figure 14 but the pipe is slightly heated. 
The predicted behaviour of figure 11 is revealed in each of these experiments although 
rather weakly in some cases. Most importantly, however, the transition region quite 
obviously varies with the Reynolds number as we see by comparing figures 12 and 
13 in which the Reynolds numbers differ considerably. We notice that the transition 
region (mesolayer) moves outward roughly in accordance with the theoretical Ri be- 
haviour, but data below the mesolayer do not exist in most pipe experiments (e.g. those 
of Nikuradse 1932) and we could not verify the R* behaviour quantitatively. We were 
able to do just this for a boundary layer and we give results in the next section. 

We present additional evidence for the existence of the mesolayer in pipe flow from 
the measured profiles of the streamwise r.m.s. velocity a,. Observations indicate that 
the curve rises sharply from the wall to a maximum located at z N 1 and then de- 
creases. The classical theory, however, predicts that it should become constant and 
we portray this in the curve labelled au+ in figure 16. Perry & Abell (1975) believe, 
as do we, that the curve drops because of the influence of the outer region (outer length 
R) and that the region of constancy is unclear in the data because of the modest 
Reynolds numbers of the experiments. The data in their figure 7 show a region around 
z = 100 where au appears to level off at  higher Reynolds numbers and they believe 
that this is the classical overlap region. At the highest Reynolds number, however, 
there is a weak tendency for au to actually increase again to a secondary maximum 
in the manner of the dashed curve in figure 16 and classical theory does not explain 
this. In mesolayer theory, au+ should also have the classical behaviour of figure 16, 
and the secondary maximum is explained by the tendency of the outer eddies to cause 
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z 

FIGURE 16. Schematic behaviour of b, profiles. 6, = u,++u,*. 

another maximum of a, in the mesolayer as in shear-free turbulence (Uzkan & Rey- 
nolds 1967; Thomas & Hancock 1977) and thermal convection (Willis & Deardorff 
1967; Adrian & Ferreira 1979; our figure 5). I n  shear flow we should not be surprised 
that this tendency is weakened by the influence of the outer length causing a, to  
decrease. 

The outer eddies have a velocity scale u, and they create the second component in 
the mesolayer. Therefore the second component of motion is of first-order importance 
and so the first two terms in the mesolayer expansion for atL should be 

(27) 

I n  the mesolayer where z B 1,  a;, will have its asymptotic, constant value and so the 
curves of should collapse in a t  least a thin region for all Reynolds numbers when 
plotted against the similarity variable 2 rather than z. The plot of the data of Perry & 
Abell in figure 17 shows that the region of collapse exists and is centred at 2 = 4.0, 
approximately. The behaviour of u, in a pipe which encouraged Perry & Abell in 
their efforts to verify classical theory also encourages us in our efforts to  verify meso- 
layer theory and this illustrates the,frequent difficulties in our earliest efforts to dis- 
tinguish mesolayer theory from classical theory even though they are different in 
principle and give predictions which are different in appearance a t  high enough 
Reynolds numbers. 

The r.m.s. normal velocity is little influenced near the wall by the second component 
of motion because a,+ N 1 but, from continuity, u,* N R-9. This explains the relative 
deepness of the layer of the law of the wall for u , ~  as mentioned in 3 2. 

The constant S& in (24)-(26) must be small and negative,t because the velocity 
profiles in a logarithmic plot has a smaller slope above the mesolayer than below. 
This means that the contribution of the second component of turbulent motion to  

a21 = ~,+,+(4 + a,*($). 

t The first determination of KBrmLn’s constant was K = 0.41 by Nikuradse who had no 
data in the inner portions of the mesolayer. Then, we may reasonably take S&+S:o 2-37. 
We cannot make a very good estimate of S& but it appears to be, perhaps, 2.89. If we define 
(S$)-1 as the ‘proper’ von KBrmBn’s constant we have a new estimate 0.35 close to that measured 
by Businger et nl.  (1971) in t h e  atmosphere. Then S,*, g -0 .52.  
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the mean velocity, Z,, is negative in the outer part of the mesolayer, as indeed it must 
be in most of the outer region because observations show that the mean velocity in 
the centre of the pipe is less than that given by the component in (23). Moreover, 
according to (25), 2, decreases outward (Coo may be small negrtive). We would expect, 
therefore, that the eddy flux of momentum due to the second component T* should 
cause a transfer of momentum outward, i.e. in the opposite direction to T+ but properly 
down the gradient of U,. Thus the gradual decrease of T beyond the centre of the 
mesolayer is attributable directly to the tendency for U* momentum to flow toward 
the centre of the pipe. This may be regarded as a rough physical explanation why the 
maximum of T lies at x - R3, i.e. in the mesolayer. We have said that the smallness 
of 84 means a weak (although order one) contribution of the second component to 
the mean velocity and thus to the observed smallness of the 'correction' (Hinze 1975, 
p. 721) to the logarithmic profile a t  the centre of the pipe. In  a boundary layer this 
'correction' is larger and we would then anticipate that the mesolayer effect would 
show up more strongly in a boundary layer than in a pipe. We will see that this is so 
in the next section. 

We have assumed on the basis of the ' sloshing ' argument of 3 3 that a mesolayer 
of thickness R4 exists. We may improve the discussion of this and see the vital impor- 
tance of the mesolayer as follows: We may write the inner forms for the mean velocity 
and Reynolds stress as in (19)  and (20) except now 2 = z/m, where m(R) is the un- 
determined thickness of the mesolayer. Of course we may recover classical theory by 
putting h = 1, g = I, r r ~  = 1 or u* = T* = 0. Substituting (19) and (20) into (5) and 
letting R -+ 00, we get 

u;+T+ = 1. (28) 
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Subtracting (28) from (5) we have, also, 

Differentiation of (29) yields 
hm-lu; + gT, = - xR-l. 

hm-%; + gm-lT; = - R-l. 

We now use the fundamental property of the mesolayer, 2 - 1, that inertial and viscous 
forces for the second component are of the same order in the layer. Then in (30) 
h = mg. Using dimensional analysis and independence of v for the first component in 
regions above the sublayer, u; in (28) is proportional to  z-l in the mesolayer (or a t  
any large 2 ) .  Using (28) 

where St is a universal constant. Then, in the mesolayer, we have 

U; -+ T+ -+ 1 -Six-', 

T = 1 - Siz-lm-l +gT *' 
The Reynolds stress T is zero a t  the wall of the pipe and zero also a t  the centre of 

the pipe and so, as also observed, it is a maximum a t  some distance z4 from the wall. 
Clearly, this cannot occur in the outer region because there is a vicinity of the maxi- 
mum where the viscous and Reynolds stress forces are of the same order and this is 
the property of the mesolayer. Thus z4 = a4m, where a4 is a universal constant. We 
may also look at this as follows: T;  = S,fz-2 in the mesolayer (where x 1) and this 
clearly dominates the slope of T a t  smaller x .  The negative contribution to the slope 
from the second component of the turbulent motion, gm-lT; is negligible a t  smaller 
z and dominates a t  larger x since the slope must become negative a t  larger x .  Thus 

S$a,-2m-2 = -~m-~T;(a,) ,  (31) 

(32) 

and so g(R) = m-l. From (5) ;izz(x4) = - R-l or 

hm-2u;(a4) - (S$ay2m-2 = R-l. 

This shows h = 1 ,  m = Ri and we obtain the mesolayer thickness again and the 
location of the maximum a t  z4 N Ri in agreement with the slope of the curve of figure 2. 
Of course, we may attempt to  rescue classical theory by putting .;(a4) = 0, but we 
have no theoretical or other reason for doing this. We establish a t  the very least that 
the present theory is competitive with classical theory. But we can do more: If we 
follow classical thinking and neglect the mesolayer contribution in (32) we get 

a4 = (St)$. 

Then using a4 = 1.89 from figure 2 we find K 0.28 for von KQrmBn's constant, which 
is absurdly small. This is one of the most supportive pieces of evidence in this paper. 
The mesolayer simply has to  be there to build up the needed deficit in the von KBrmBn 
constant. Furthermore, despite the uncertainty in our estimations of S,*, and S& we 
can show good agreement with our estimation of the mesolayer contribution to the 
location of the maximum of the Reynolds stress and the mesolayer contribution to 
the mean velocity. The former is 0-19/1-70 or 12% and the latter is 0.52/2.89 or 18 % 
of the contribution of the first component. There is no theoretical reason why these 
percentages need be the same because the maximum of the Reynolds stress is not 
necessarily in the outer portions of the mesolayer but the closeness of the two 
percentages is favourable to our ideas. We emphasize that the contributions of the 
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mesolayer in the two cases are numerically small hut of the same order of magnitude 
as the Jirst (classical) component. Perhaps, the main significance of the smallness is 
that  i t  permitted the classical theory to survive for so long ! 

An argument against the mesolayer theory by one of the referees was that classical 
theory predicts the constancy of T in a region 1 < z < R and so, a t  best, mesolayer 
theory provides only a small correction to classical theory. Such an argument contains 
a slight appeal but can be advanced only because T is of order one and the mesolayer 
contribution is asymptotically small, of order g N R-4 < 1. The argument is quite 
wrong for most mean quantities including the mean velocity and the tangential 
r.m.s. velocities in a pipe and, more pertinently, for the slope of the curve of Reynolds 
stress. The present theory works for all of these and for T itself. The classical theory 
is wrong even with respect to  order of magnitude for the mean velocity in the Ekman 
layer ( 3 7). 

6. The turbulent boundary layer at zero incidence 
Let us now consider enough of the theory of a turbulent boundary layer t o  enable 

us to relate the large amount of experimental data to the new mesolayer theory. 
The theoretical model is flow with uniform velocity U, along the x axis moving over 
a flat plate extending from xd = 0 to  x, = cg as in figure 18. We assume that a turbulent 
layer develops over the plate of thickness 6,(x,) and that the stress a t  the surface 
isu:(xa). 

Variation of friction velocity with distance along the plate 
Let us try a preliminary scaling, as in the classical approach, on the local friction 
velocity u, and viscosity 1’ and consider the non-dimensional quantity 

Using 
s = - (Xd/U,)  du,/dx,. 

I 

x = x,u,/v, dxd/dx = v / u , ( ~  - s ) ,  
(33) becomes 

Let us assume tentatively that s -+ co as x, -+ co. Then 

- s = (x/u,) (du,/dx) (1 - 8 ) .  

xd ur x du, 
u,dx v ’  

+ l ,  U , + X  or u,+- 

which is impossible. On the other hand suppose s -+ 0 as xd; + co. Then 

ax u, x, ax -- + 1, x -+ con st.^,. 
(E2d+l’’ xdx, (37) 

The constant in (37) must be a function of U, and v, so u, -+ A, U,, where A ,  is a uni- 
versal constant. But then the drag is independent of viscosity and this may be rejected 
on physical grounds. We conclude that s + so = const. as u, + ur0. Integration of 
(33) then yields 

(38) 
where A is a universal constant, and we drop the subscript of so. Thus 

(39) 

where x and other mean quantities are scaled on ur0 and v and A,, is a universal constant. 

ur0 = A,XgS, A, = AU;-’vs, 

uo = Ud/UTO = A,xS,(l-”, 
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FIGURE 18. Flow over a flat plate at  zero incidence. 

Variation of boundary-layer thickness with distance along the plate 
If an infinite plate moves with a suddenly imposed uniform stress, pu',, the motion 
will cause the appearance and growth of a turbulent boundary layer over the plate 
whose thickness increases at  an 'entrainment velocity ' proportional, to first order, 
to the eddy velocity in the main portion of the layer which, from Reynolds number 
similarity, we assume to be proportional to u,. If we move with the mean position of 
the front we see an inflow of upper irrotational fluid into the turbulent region at  a 
mean velocity equaI to the entrainment velocity. In the present problem, the mean 
front is stationary at an angle 8 to the horizontal and we conclude that there must 
be an inflow of irrotational fluid into the boundary layer with inflow velocity propor- 
tional to the local friction velocity. If we scale on U, and v, the boundary condition 
becomes? 

a$ 
an ag a7 

--= " _ _  '$sin 8+-cos 8 = KO U-l at 7 = f (g), U = U&,, (40) 

where n is the inward normal at  the mean position of the interface 7 = f (g), and E,7 
are the new co-ordinates, = xd UJv, 7 = zd U,/v. The velocity potential is d, and KO 
is a universal constant. One possibility is that $ = - 5 so that the boundary layer has 
no (blocking ' effect on the outsicle flow and the inward velocity is Ud sin 8. We should 
not assume this, however, and, in fact, it may be shown that the vertical velocity in 
the vicinity of the interface is not zero. In  any case we are safe to use Reynolds number 
similarity to assume that, if it is not zero, it is of order u,, or, to first order, uT0 K xz8. 
If we take for $, 

we get 

where a, and ai are real. Also, to first order, sin8 = f' and cose = 1,  so that (40) 
becomes 

f ' ( l-a,ap-l+ ...)- aaiP- l . . .  g K1[-S, 

where we have used (39). Thus f '  = K,  (+, a = 1 - s and we verify that the vertical 
velocity is of order uT0 or less in the outer region of the boundary layer. It is also 

t We neglect the weak mean vorticity above the front associated with the presence of fluid 
with vorticity (boundary-layer fluid above the mean position of the front) accompanying 
turbulent fluctuations. This region of vorticity is assumed to become negligibly thin compared 
with 6, as rd  + co, 6, --f 00. 

4 = Rea([+i7)"-5, (41) 

@ = a,ga-uUi~ga-l-- 5, (42) 
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independent of height in this region. We may go on to  higher approximations, but this 
is sufficient for present purposes. 

If we revert now to the scaling on u,, and v, f '  = K ,  c-s has the integral 

8, = ~ , X ( 1 - 2 S ~ / ( l - S )  ' 8, = &ou,o/v, x = xdur0/v ,  (43) 

where B, is a universal conslant and So is the Reynolds number in a form analogous 
to  that for a pipe. The predictions of (39) and (43) may be compared to  figures 19 and 
20. The empirical constant s was evaluated separately {or the two sets of data and the 
agreement that s 2 0.0835 for both cases is reassuring. 

M e a n  velocity distribution in the boundary layer 
In a pipe the mean velocity profile is logarithmic in the region 1 < z < R* and also 
in R* < z 4 R but the slopes of the curves in a plot of 5 vs. Inz are somewhat different 
and we have found that close inspection of the data revealed a transition vgion a t  
z N R* and confirmed the existence of the mesolayer. I n  a turbulent boundary layer 
the theory is quite different, as we might expect from the new drag law in (39) which 
does not have the logarithmic behaviour of classical theory. 

The distribution of h in the boundary layer is obtained to  first erder by matching. 
The inner form is 

(44) 

I n  (44), we scale on u,, and v and 2 = z/m(8,), where we suspect, but do not require, 
that m = &j. The outer form, assuming Reynolds-number similarity, is 

5 = u+(z) + h,(S,) u*(2). 

U0-G = u,([), g = z/S,. (45) 

K,,G-u+(z) -h,u*(P) = uo(!3, (46) 

Matching and using (39) and (43), we get 

where KO, is a universal constant and 01 = s/( 1 - 2s). We find h, = dt and that u+ and 
h,u, are both of order 85 in the mesolayer. The mean equations of motion then yield 
m = 8i by equating the viscous term of order Sg/m2 to  the inertia term of order S p / x  
in the mesolayer. The results of matching 

are 
u+ = A&z2"+Ao+l (2 $ 1)'  

u* = -A,+,&2"+Ko0-Alo2-2" (2 9 l),  

u, = A,,fS-2"+A11 (&+ < g < 11, (50)  

u, = K,,&+A,,+A,+, (8, B 1) .  (51) 

I n  contrast to classical results (Monin & Yaglom 1971, p. 314) we see that logarithmic 
behaviour is entirely absent in the mesolayer theory of the boundary layer. The 
mean velocity in (48) is appropriate to  the region 1 < z < Si below the mesolayer, 
and the velocity defect in (50) to the region St < x < So above the mesolayer. We 
have seen that s +z so that the behaviour is close to  logarithmic, but we 
should nevertheless explain why the classical argument is faulty. I n  classical theory 
one assumes that the velocity defect is independent of Reynolds number So in the 

01 
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outer region and that it obeys the law of the wall in the inner region. The matching 
then yields logarithmic behaviour for U, and ii in the matched region. In  mesolayer 
theory, the matching is different, but even so in a pipe, for example, we have seen that 
logarithmic behaviour is found for U, and for above and below the mesolayer. 
In  the latter region of the pipe one may also argue that ii, is the mean velocity above 
the sublayer for flow in infinite half-space a t  the given friction velocity and therefore, 
from dimensional analysis, diiJdz w 2-1. Integration yields ii, r~ lnz. Let us show 
that the dimensional argument cannot be used successfully for the boundary layer. 
Looked a t  more carefully, the argument for the pipe is ( 1 )  that there is a region near 
the wall (0  < zd < a in classical theory, 0 < zlI < aR4 in mesolayer theory) in which 
there is a relation 

(52) f (dGd/dzd> u7, z d ,  v )  = 

v/u7 < zll < R*v/u7 
and (2) that a t  larger zlI in this region (v/u, zd < a in classical theory, 

in mesolayer theory), viscosity may be neglected and therefore that 

in this region. But notice that a dimensional argument that fl(Q1, Q z ,  . . , , Q,) = 0 
reduces to fz(Q1, Q2,  ..., QnP1) = 0 as Q, --f 0 can only be justified if, in the limiting 
process involved in Q,, -f 0,  no other Qi tends to  zero or infinity. I n  the boundary layer, 
however, we cannot keep the other quantities in (52) finitte as v + 0. We may show 
this as follows: If we choose a fixed S,j and a fixed zd < S,, we may so vary U, (or keep 
i t  fixed) as to satisfy the requirement z,,/(v/u,) 1 as v -+ 0. but we must also require 
zd/(v/u7) 60 < 1 or . Z J ( V / U ~ ) ~ - ~ ~ $  < 1 as v -+ 0,  where S = Sau7/v, and where (v/u7) So 
is the mesolayer thickness ( a  = 1 in classical theory, a = in mesolayer theory). I n  
classical theory, the two requirements are possible, but in mesolayer theory they are 
not and the argument leading to logarithmic behaviour fails. 

It is not surprising in view of the form of the mean velocity in (48) and (50) that 
the mesolayer stands out more clearly in the boundary layer than in a pipe and this 
is so apparent, for example, in the plot of the boundary-layer data of Smith & Walker 
(1959) in the survey paper of Rotta (1962, see his figure 13.3) that  it is astonishing that 
no mention is made of the damage that this does to the classical theory. The data we 
have now accumulated for the boundary layer includes some forty experimentst by 
Smith & Walker (1959), twenty experiments by Wieghardt (1969), one experiment by 
Klebanoff (1954) and one experiment by Ludwieg & Tillman (1950). We show a few 
of these in figures 21-27 and these and all other experiments reveal the same qualitative 
behaviour as in a pipe or in figure 11. Figures 21 and 22 show individual plots at very 
different Reynolds numbers. Both show the behaviour of figure 11 and a great differ- 
ence of z for the two transition regions. Figures 23-25 show individual experiments 
over wide ranges of Reynolds number by Smith & Walker and Wieghardt and figure 
26 shows that the deviatiop from logarithmic behaviour cannot be ascribed to experi- 

t In the figures for the boundary layer we often use R instead of 8, for the non-dimensional 
boundary-layer thickness. 
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FIGURE 21. Mean velocity in a boundary layer at  low Reynolds number 
(Smith C Walker 1959). R = 1326. 

mental error. Figure 27 shows similar behaviour in the data of Ludwieg & Tillman. 
We evaluated the constants in the first two terms of the inner expansion ii, by assuming 
that this is a good expression for 5 in the region 15 < z < 0-7Rt. The results, using the 
data of Smith & Walker, are in figure 28. Certainly, the observed velocity shear is 
greater than a5,la.z somewhere near the wall and smaller than aii+/az far away from 
the wall. The theory shows that aU/az = a;ii+/az at  a point in the mesolayer, i.e. a t  
a distance proportional to So = R4. It is rather difficult to locate this point in any given 
experiment but the estimates from all experiments are shown in figure 29 and it is 
altogether quite convincing that there is the predicted variation. Finally, using the 
expression for 5, and 

we could plot (U - U+) Stu. We see in figure 30 that this quantity is, in fact, a function 
of '2 alone in accordance with theory. 

;ii = ;iE++s:u*(b), ( 5 5 )  

7. The Ekman layer 
The neutral planetary boundary layer, or Ekman layer, offers an interesting appli- 

cation of mesolayer theory. For present purposes, we idealize it as the flow of a liquid 
over a rotating smooth plate at z = 0. The velocity in the relative frame (ug ,vg)  at  
2 +'co is called the geostrophic velpity and is assumed constant. The mean equations, 
scaled on inner variables v and u,,'are (Plate 1971) 

-R-'(G-v,) = 5,,+T,, (56)  

(57) R-'('iE - ug) = Gzz + Q,, 
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FIGURE 22. Mean velocity in a boundary layer a t  high Reynolds number 
(Smith &Walker 1959). R = 15466. 
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FIGURE 23. Mean velocity in a boundary layer over a range of Reynolds numbers 
(Smith & Walker 1959). 
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numbers (Wieghardt 1969). 
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FIGURE 26. Mean velocity in a boundary layer at  two similar Reynolds numbers 
(Smith & Walker 1969). a, R (=  u7Sd/v) = 10587; x ,  R = 10522. 
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FIGURE 27. Mean velocity in a boundary layer (Ludwieg & 
Tillmann 1950). R = 2600. 

I 04 

where we adopt, initially, a co-ordinate system with axes of arbitrary orientation in 
the x, y plane. The Reynolds number is now R = u:/ f v, where f is the Coriolis para- 
meter, or twice the angular speed of the rotating system. The two Reynolds stresses 
are 27 = -u'w' and Q = -v'w'. 

The problem was approached from the viewpoint of classical theory independently 
by Gill (1967) and Csanady (1967). They assumed a co-ordinate system with x axis in 

- - 
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FIGURE 29. Distance of transition region from the wall in boundary-layer experiments. 

the direction of the surface stress of magnitude pu; and argued that there should be a 
region near the wall where 

5 = a+&), ;ij = 0. (58)  

They further argued that velocity defects 5 - ug and V - v g  should obey Reynolds- 
number similarity in the outer region. If the planetary boundary layer has a finite 
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FIGURE 30. Plot of (G-G+) R-a in (51). x ,  1326; 0, 2659; +, 4687; A, 6069; 
V, 10522; V, 10587; A, 11772; 0 ,  15446. 

depth H ,  it  should be proportiona,l to u7/f and this was used for the outer length.? 
The outer behaviour is then 

(59) 

A matching of ( 5 8 )  and (59) in the overlap region yields the classical results that the 
‘geostrophic’ drag is logarithmic and that the mean velocity profile near the ground 
is logarithmic as in non-rotating shear flow in a pipe. Much effort has gone into an 
attempt to verify the geostrophic drag law because of its practical importance in 
numerical weather forecasting and atmospheric modelling. 

If we now go over to mesolayer theory, then, as in pipe flow, we may now express 
quantities near the surface as follows: 

- 
U - U ~  = u0([),  V - V ,  = w@([), 6 = z/R. 

T = T+(x)+li(R)T*(%)+ ..., (62) 

& = &+(4 +l,(R) &*@) + . * * >  (63) 

where the similarity variable 5 = z/m and where we suspect but do not require at  
this point that m is equal to R). Substitution into the derivatives of the equations of 
motion (56) and (57) then yields 

- m2R-l(g+ + h,g,) = 1,T; + h,f,”, T ;  +fl; = 0, (64) 

“2R-l(f++hlf*) = Z,&,”+h,g,”, Q;+gl; = 0. (65) 

Since we have an arbitrary co-ordinate system, it is apparent from dimensional ana- 
lysis that the inner mean velocity components are logarithmic so that f+ and g+ in 

t Measurements (Plate 1971 ; Howroyd & Slawson 1975) give H g 0.4u7/f. 
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(60) and (61) are proportional to z-l or 2-lm-l in the mesolayer. Furthermore (64) 
and (65) evaluated a t  the plate lead to h, = h, = m2R-l. Then in (64) and (65) the 
g+ and f+ terms are small in the mesolayer and therefore we find that 

h,=h,=l ,=l ,= 1, (66) 

and that m = R*, as we anticipated. Finally the existence of the small terms, of relative 
order R-4, represented by g, and f+ in (64) and (65) suggest that in higher approxima- 
tions for the mean quantities the functions of R decrease in increments of R-4. 

We may now write down the first three terms for the mean quantities in (60)-(63). 
They are 

(67) 

(68) 

(69) 

(70) 

We assume Reynolds-number similarity for the outer forms to first approximation, 
for example T N To(C), and then the equations of motion suggest the higher approxi- 
mations, e.g. T = T,([)+R-lT,(C)+ ... , We now match and, using (64) and (65), 
obtain 

% = f+(4 +f*o(2) + W*J% 
% = g + ( 4  + q*o@)  + R-%*,(% 
T = T+(z) + T*,(O) + R-*T*,(e), 
& = &+(4 + Q*o(% + R-%?*,(2). 

f+ = K,z-'+cx,z-~, g+ = K , z - ~ + / ~ , z - ~ ,  T+ = a,-Klz-l, &+ = a2-KK,z-l, (71) 

(72) 

f*o = A022-4+A0324, f*, = -K1P-1+A122-3, g*, = Bo22-4+B032-6, 
g,, = - K , V +  B,,2-3. 

The outer forms are 

zc = 2E21+ 6E31 C j  zc = - 2021 - 6D31 g, T = + Eo,+ El1 5, & = a2 + Do1 + D1, {. 
(73) 

A remarkable feature of these solutions is the cancelling of the z-l term in the first 
component of the mean velocity gradient by the mesolayer contribution. This means 
that the velocity projile is no longer logarithmic above the mesolayer as it is, for example, 
inpipeJEow. This behaviour is in agreement with the integrals of (67) and (68) which 
indicate that the mesolayer contribution to the mean velocity exceeds, in order of 
magnitude, the contribution of the first component. This differs from the situation in 
a pipe where the contributions are of the same order. This large velocity in the meso- 
layer directly causes the geostrophic velocities to be ug N Ri, vg - R* which differ 
greatly from the logarithmic behaviour of the classical results (Plate 1971). Experi- 
ments with rotating wind tunnels (Caldwell, Van Atta & Holland 1972; Kreider 
1973; Howroyd & Slawson 1975) provide a number of measurements which are 
presented in figure 31. The scatter is so great that we do not regard the results as 
conclusive but, certainly, the predicted behaviour is possible. 

We may obtain additional theoretical information from the integral of (57), where 
we now take a co-ordinate system with x axis along the surface stress. We get 

(U - U g )  ax = 0. (74) 

This shows that Ti must exceed ug over a large region, obviously the outer part of t h e  
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layer because U < ug in the lower portions. This prediction is confirmed by all experi- 
mental data. According to (57) when Z- ug = 0,  the Reynolds stress forces and viscous 
forces are equal and this is the fundamental property of the mesolayer. This predicts 
that Ti = ug at a point Q - R-* as indicated by the data in figure 32 although the 
scatter is great. Since U > up in the outer region where U - ug is of order 1,  and, since 
this region has a thickness of order R, the positive contribution to (74) is of order R. 
But then, because Ti < ug in a small region of thickness of order R3, we find that 
ii - ug is large of order Rg in the mesolayer if we are to obtain an equal negative con- 
tribution to (74). This agrees with the above theory. 

Physically, we anticipate that the mesolayer effect will be to increase the shear in 
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FIGURE 33. Plot of data of McDougall (1979) for r.m.8. horizontal and vertical velocit’ies near a 
wall. We non-dimensionalize on ‘action’ R and total fluid depth H .  

the lower portions of the mesolayer (to permit the Rt velocities) and to decrease the 
shear in the upper portions of the mesolayer. We have already noted that the shear 
becomes zero as U reaches a maximum aloft and, in fact, the observations of Kreider 
(1973) indicate a layer of increased shear above a point fixed with respect to the sub- 
layer a t ,  perhaps, z - 15. 

8. Grid turbulence near a wall 
A recent paper by McDougall(l979) reported r.m.s. velocities near a wall in turbu- 

lence generated by an oscillating grid a t  some distance. This is a form of shear-free 
turbulence similar to that of Uzkan & Reynolds except that the r.m.s. velocities 
increase and length scales decrease with distance from the wall. As mentioned earlier, 
a theoretical model of grid turbulence (Long 1978b) predicts, for an infinite fluid, 

with distance from the grid, where 1 is the integral scale and K is a constant called 
the ‘action’ of the grid. vdu is an r.m.s. velocity, say the component parallel to  the 
plane of the grid. In  McDougall’s experiment, vdu r 0.34 cm sec-l at a distance of 
10.0 cm from the grid so that K = 3.4 cm2 s-l. The wall is located at H = 12.25 cm 
from the grid and we compute vdr, = 0.28 cm s-l a t  this distance for the infinite fluid. 
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This is considerably less than 0.38 cm s-l for the measured values near the wall so 
that the wall increases the r.m.s. horizontal velocities as it does in the wind-tunnel 
experiments. Application of mesolayer theory is simple in this problem. If we non- 
dimensionalize with K and H and take xd as distance from the wall, we have 

U, = u,*($), 2 = z/R*, z = z,K/uH (2 N I),  (76) 

(77) 

to first order, in the region near the wall, and 

far from the wall. Solutions for the matched region are 

where A and B are universal constants. The predicted behaviour is seen in the data 
of figure 33, where A r 1.35, B 16.7. We estimate the mesolayer to be of thickness 

where CT and 1 are the velocity and horizontal length scales near the wall. The data 
give u r 0.01, 1-r 1.0, a g 0.34 so that Sam 2 0.26 cm or fsm 0.02. It is just here 
that the predicted constancy of a, begins as we see in figure 33. 
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